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REVIEW

Bispecific antibody: a tool for diagnosis and treatment of disease
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SUMMARY

Antibodies with two distinct binding specificities have great potential for a wide range of clinical
applications as targeting agents for in vitro and in vivo immunodiagnosis and therapy, and for
improving immunoassays. They have shown great promise for targeting cytotoxic effector cells,
delivering radionuclides, toxins or cytotoxic drugs to specific targets, particularly tumour cells. We
discuss potential applications of bispecific antibodies, the theoretical basis and problems associated
with their production and purification, cell fusion and chemical conjugation techniques, and propose
a new manufacturing strategy by genetic engineering. This approach has enormous potential
applications for producing tailor-made bispecific antibodies, and will enable widespread clinical uses
of these antibodies both for diagnostic purposes and therapy.
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INTRODUCTION

In the first decade of this century Paul Ehrlich proposed the idea
of using 'bodies which possess a particular affinity for a certain
organ ... as a carrier by which to bring therapeutically active
groups to the organ in question' (Ehrlich, 1906). Since then
immunologists have tried to use immunoglobulins for specific
diagnosis and treatment of cancer, largely by polyclonal
antibodies. The results have been encouraging but, as yet,
largely unsuccessful. The introduction of hybridoma tech-
nology for producing monoclonal antibodies (Kohler & Mil-
stein, 1975) has revolutionized almost every field of modern
medicine, including tumour targeting. Monoclonal antibodies
seem to be the ideal 'magic bullets' for specific targeting of
tumours.

Because of the inadequate ability of antibodies to be thera-
peutically or diagnostically efficient on their own, efforts have
been made to increase the efficiency of monoclonal antibodies
by attaching them to various agents such as bacterial or plant
toxins, radionuclides and cytotoxic drugs. Research in the past
has been concentrated on using reagents derived mainly from
the direct conjugation of antibodies to the effector compounds,
which has been accomplished by several distinct methods of
covalent coupling (reviewed by Ghose & Blair, 1987; Blakey et
al., 1988). These 'immunoconjugates' have now been used for
diagnosis and therapy (reviewed by Goldenberg, 1989).

Direct coupling ofantibodies to effector compounds has some
major disadvantages. Chemical manipulation can inactivate
antibody binding sites as well as cause crucial alterations in the
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effector agents (Hurwitz et al., 1975), thus decreasing the
efficiency of the immunoconjugates. Problems may also arise if
the covalent bonds between the carrier antibody and the effector
compound needs to be broken for full biological action since
such bonds may not be easily split (Raso & Griffin, 1981).
Another major disadvantage is the non-specific interaction of
the Fc domain of an immunoconjugate with its receptor on cells
of the reticuloendothelial system, resulting in the undesired
accumulation of antibody in some organs, notably the liver and
spleen. This high background of labelled antibodies affects the
sensitivity of tumour imaging, and also leads to non-specific
destruction of cells and organs. The use of Fab fragments,
instead of whole antibody molecules, overcomes some of the
difficulties but fails to resolve this problem completely (Golden-
berg, 1988).

There is evidence that antibodies which bind non-specifi-
cally, probably via their Fc portion, are cleared from the body
faster than those that bind specifically to their tumour targets
(Henkel et al., 1985; and reviewed by Goldenberg, 1988). This
has led to the development of an alternative approach for
tumour targeting in which instead of coupling effector com-
pounds directly to antibody, a multi-stage delivery system has
been employed. Bispecific antibodies which have two different
antigen-specific binding sites, one for tumour-associated antigen
(target binding arm) and the other for the effector compounds
(effector binding arm), have been developed. The specifically
designed bispecific monoclonal antibody is firstly targeted to the
tumnour site by its tumour specificity. After allowing a suitable
period of time for the non-specifically bound antibody to be
cleared, the effector compound, which is recognized by the
second specificity of the targeted antibody, is then injected
separately, leading to its specific localization to the tumour. This
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globulins. However, fusion of two myeloma clones, each
secreting different immunoglobulins, resulted in the co-domi-
nant expression of both parental immunoglobulin genes and
two sets of heavy and light chains were found to be secreted
(Cotton & Milstein, 1973; Schwaber & Cohen, 1974). The
assembly of immunoglobulin molecules thus allows the forma-
tion of both parental immunoglobulins, and also the hybrid
molecules. A number of molecular species can be predicted
theoretically (Suresh, Cuello & Milstein, 1986a). If total random
association of heavy and light chains occurs, ten different
combinations of immunoglobulin molecules are generated;
however, only one has the desired bispecific activity (Fig. 1).

This approach has been used to produce several bispecific
antibodies. Fusions have been done between pairs of hybridoma
cell lines secreting two existing monoclonal antibodies (Suresh
et al., 1986b; Tiebout et al., 1987; Urnovitz et al., 1988), or

between hybridoma cell lines and immune spleen cells (Kohler &
Milstein, 1975; Milstein & Cuello, 1983; Webb et al., 1985). The
former is preferable since the specificity of the resulting
bispecific antibody should be more predictable. The quality and
affinity of bispecific antibodies derived from the latter remains a

matter of chance and depends on the contribution of spleen cell
partner, requiring the characterization of the specificity of the
hybrid antibodies. The main advantage of the fusion technique
is that the resulting bispecific antibodies are synthesized,
assembled, and secreted by the same process as that of the native
immunoglobulin. Their stability, both in vitro and in vivo, and
pharmacokinetics are theoretically comparable to those of the
normal antibodies. Once the 'hybrid hybridoma' cell lines are

obtained, they will serve as the machines to produce endless
amounts of antibody in the same way as normal hybridomas.

There are some disadvantages: difficulty of fusing hybrid
hybridoma cells, stability of the resulting cell lines, low yields,
and difficulty in purificaiton of the bispecific molecules. Cell
fusion is labour-intensive, time consuming, and may not always
succeed with the hybridoma pairs of choice. Not all hybridoma
cell lines exhibit good fusion performance (Suresh et at., 1986a;
Songsivilai, unpublished data). The lack of an easy method for
selecting the hybrid hybridoma cells results from the fact that
most parental hybridomas are derived from the fusion of HAT-
sensitive myeloma fusion partners and immune spleen cells, and
are thus HAT resistant. Several approaches have been devel-
oped. Parental hybridoma cell lines were reverted to HAT-
sensitive by selecting mutants that lack hypoxanthine-guanine
phosphoribosyltransferase (HGPRT) marker in the medium
containing 8-azaguanine or 6-thioguanine, then fused with the
immune spleen cells (Milstein & Cuello, 1983). Alternatively
hybridoma cells lacking other markers such as thymidine kinase
or adenosine phosphoribosyltransferase may also be selected in
the medium containing bromodeoxyuridine or 6-chloropurine,
respectively. Two hybridoma cell lines lacking two independent
markers have also been fused and the resulting hybrid cells
selected in simple HAT-medium (Wong & Colvin, 1987;
Urnovitz et at., 1988). Other selectable markers, such as the
resistance to neomycin, methotrexate or actinomycin D, may

also be introduced into cells by means of gene transfection
(Lanzavecchia & Scheidegger, 1987; Chervonsky et at., 1988; De
Lau et at., 1989). An alternative approach is to use two distinct
site-specific irreversible inhibitors of protein synthesis, such as

emetine, actinomycin D, or iodoacetamide, to inhibit two
independent metabolic pathways of each of the two parental cell
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lines. Fused cells apparently survived by complementing each
other (Suresh et al., 1986b). This method has been used in
combination with HAT selection by fusing the HAT-sensitive
hybridoma cell lines with the chemically treated hybridomas
(Suresh et al., 1986a; Clark & Waldmann, 1987). Alternatively,
hybrid hybridomas may also be selected by a fluorescent-
activated cell sorter (FACS) without relying on drug selection
(Karawajew et al., 1987; Koolwijk et al., 1988).

If the rate of production of the two pairs of heavy and light
chain is the same and the association of heavy and light chains
shows no homologous or heterologous preference (i.e., the
association is totally random), then the yield of the desired
bispecific antibody is 12 5% (2/16) of the total immunoglobulin
secreted by the hybrid cell (Staerz & Bevan, 1986). Prediction of
the yields of bispecific antibody is difficult, since preferential
association may occur, and thus yields can range from 0 to 50%.
The ideal condition should be an absolute homologous prefer-
ence in heavy-light chain pairing and random pairing of heavy
chains, then the yield of the desired bispecific antibody will be
50% of total immunoglobulin (Corvalan & Smith, 1987).
However, the total absence of association between heavy chains
of different class or subclass, such as IgM: IgG or IgA: IgG, may
prevent the formation of bispecific molecules (Zimmerman &
Grey, 1971; Takahashi & Fuller, 1988; Urnovitz et al., 1988).

The stability of hybrid hybridoma cell lines should be
questioned. Chromosomes of these hybrid cells are polyploid,
approximately equal to the sum of the chromosomes of both
parental hybridomas (Kohler & Milstein, 1975; Koolwijk et al.,
1988) and therefore unstable. This was shown in early work on
hybridoma fusion in which the first myeloma fusion partner
secreted murine IgG 1, resulting in a hybridoma secreting mixed
molecules, which at that time was considered to be a disadvan-
tage. Due to the instability of their chromosomes, mutants
which lost immunoglobulin genes from the parental myeloma
were easily cloned and monoclonal antibody-secreting cells
selected. For the continuing production of bispecific antibodies,
the 'hybrid hybridoma' cell lines may require frequent cloning to
maintain the presence of both sets of heavy and light chains.

Since a total of ten species ofmolecules are formed, isolation
of the bispecific antibody can be difficult. Purification has been
achieved by isoelectric focusing (Wong & Colvin, 1987),
hydroxylapatite chromatography (Staerz & Bevan, 1986; Kar-
awajew et al., 1987), ion-exchange chromatography (Suresh et
al., 1986b), or double affinity chromatography (Corvalan &
Smith, 1987).

Chemical linking of antibody molecules or their derivatives
The technique for producing bispecific antibodies by chemical
manipulation was pioneered by Nisonoff & Rivers (1961). It
does not require cell fusion, the desired bispecific antibodies can
be made more quickly and the products are also comparatively
easy to purify (Karpovsky et al., 1984; Glennie et al., 1987).

Chemical coupling can be achieved in two ways: direct
coupling of the whole antibody molecules or their derivatives,
and dissociation and reassociation of heterologous immuno-
globulin. The latter requires chemical manipulation to disso-
ciate immunoglobulins into half molecules without damaging
the antigen binding sites, then to reform the disulphide bonds
linking the heavy chains without allowing any interfering side
reactions such as the formation of intrachain or mismatch

disulphide bonds. The stability of the bond is in doubt since it
may be cleaved in vivo.

Several alternative conjugation techniques have been em-
ployed (Karpovsky et al., 1984; Brennan, Davison & Paulus,
1985; Paulus, 1985; Liu et al., 1985; Lansdorp et al., 1986;
Glennie et al., 1987). In one study, the yield of heteroconjugate
derived by the coupling using hetero-bifunctional linker, SPDP,
was about 5% of the initial monoclonal antibody used for
conjugation and its activity was partially lost 20 days after
coupling (Canevari et al., 1988). Fab fragments have also been
used instead of the whole immunoglobulin molecules; for
example, they can be linked by thioether bonds using o-
phenylenedimaleimide. The yield and stability of these mol-
ecules have been claimed to be better than the disulphide-linked
molecules (Glennie et al., 1987, 1988).

Chemical heteroconjugates of monoclonal antibodies have
different physical and biological properties from native im-
munoglobulin molecules. Chemical manipulations frequently
disturb the biological activity of antibody by alteration of the
antigen binding sites (Webb et al., 1985). The 'heteroconjugates'
derived by direct coupling of antibody molecules may have
difficulty penetrating the target site due to their size. However,
the lack of Fc ofthe F(ab')2 heteroconjugates and their small size
will also shorten the plasma half life; their stability in vitro and in
vivo, and their pharmacokinetics, have yet to be investigated.

ENGINEERING OF BISPECIFIC ANTIBODIES

The clinical use of monoclonal antibodies, mostly derived from
murine cells, faces the problem of anti-globulin response. This
limits their application especially when repeated injections are
required. In addition, a severe hypersensitivity reaction may
occur. Xenogeneic antibodies are also not well fitted to destroy
cells in vivo because the complement and cellular effectors
(K cells and phagocytes) are not recruited efficiently (Stevenson
et al., 1988). In a recent development, genetically engineered
chimaeric human/mouse monoclonal antibodies have been
developed by replacing the Fc region of the murine immuno-
globulin molecule with the human constant region (Morrison
et al., 1984; Boulianne, Hozumi & Shulman, 1984; Neuberger et
al., 1985). The framework regions of variable domains of
murine immunoglobulin have also been replaced by their
human counterpart, or vice versa (Jones et al., 1986). These
chimaeric antibodies have been shown to be less immunogenic
than the native murine antibodies. Genetic engineering has also
been used to produce tailor-made antibodies with special
properties, such as single-chain Fv and single-domain anti-
bodies (Huston et al., 1988; Bird et al., 1988; Ward et al., 1989).

Bispecific antibodies have been produced by introducing
two sets of immunoglobulin heavy and light chain genes into
myeloma cells or by transfecting a set of heavy and light chain
genes into secreting hybridoma or transfectoma cell lines.
Chimaeric bispecific antibodies have been identified using both
techniques (Songsivilai, Clissold & Lachmann, 1989; Johnson et
al., 1989). Since only the variable regions are derived from the
parent hybridomas, the constant regions ofthe two heavy chains
of chimaeric immunoglobulins can be selected to allow total
random association of heavy chains for the best yield of
bispecific antibodies. Bispecific antibodies that cannot be
produced due to the inability of parental heavy chains to form
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stable molecules can also be engineered by replacing the heavy
chain with a suitable class or subclass. A matched set of 'mixed
isotype' bispecific antibodies with the same specificities may also
be produced. For some applications where polyvalent, rather
than monovalent, bispecific antibodies are preferred (Laky et

al., 1987; Urnovitz et al., 1988), dimeric IgA or pentameric IgM
bispecific or multi-specific monoclonal antibodies may be
constructed. Transfectomas secreting bispecific antibodies will
have a smaller number, and less complexity of chromosomes
compared with hybrid hybridomas from cell fusion. Since only
small chimaeric genes are introduced and then integrated into
host genome, the resulting transfectoma cell lines should be
more stable.

Antibody engineering will have enormous applications for
producing tailor-made bispecific antibodies. For example,
preferential homologous heavy-light chain association may

theoretically be driven by selecting suitable pairs of heavy and
light chains. Genetically engineered single-peptide bispecific
antibodies (such as VHl-VL1-VH2-VL2) may also be con-

structed using peptide linkers between each variable domain.
This construct will allow 100% yield of bispecific molecules.
Other expression systems such as Escherichia coli may increase
the yield of the engineered bispecific antibodies.

APPLICATIONS OF BISPECIFIC ANTIBODIES

Immunoassays
The effector binding arm can be designed to have specificity for
marker enzymes or other indicator systems. The anti-target-
anti-peroxidase bispecific antibodies which have been used in
immunohistochemistry have led to improvements in sensitivity,
signal-to-noise ratio, and simplification of staining procedures
with preservation of fine ultrastructural detail (Milstein &
Cuello, 1983; Suresh et al., 1986b; Ribeiro da Silva, Tagari &
Cuello, 1989). These reagents may also simplify or improve
diagnostic techniques, such as in single-step immunoassays and
other assay systems (Leong, Milstein & Pannell, 1986; Kara-
wajew et al., 1988; Takahashi & Fuller, 1988; Tada, Toyoda &
Iwasa, 1989).

Tumour targeting
The use of bispecific antibodies for immunodiagnosis and
therapy has shown some encouraging results. They have been
used for delivering effector substances such as toxins (Corvalan
et al., 1987; Webb et al., 1989) and cytotoxic drugs to tumours,
and some are now in clinical trials (Stickney, Slater & Frincke,
1989).

Cross-linking of cellular antigens andfocusing of effector cells
Many efforts have been made to use bispecific antibodies to

focus cytotoxic effector cell response to tumour targets. This

system has been studied either in vitro and in vivo, in animal and
human models, using both the heteroconjugates and the hybrid
bispecific antibodies. Several effector binding specificities were

used. These included antibodies to Fc receptor (Karpovsky et

al., 1984; Shen et al., 1986), T cell receptor/CD3 complexes (Liu
et al., 1985; Perez et al., 1985; Staerz, Kanagawa & Bevan, 1985;
Jung et al., 1986; Barr et al., 1987; Lanzavecchia & Scheidegger,
1987; Clark & Waldmann, 1987; Rammensee et al., 1987;
Vyakarnam et al., 1988; van Dijk et al., 1989; Roosnek &

Lanzavecchia, 1989), and CD2 molecules (Goedegebuure et al.,
1989). Bispecific antibodies which bind to target cells can
activate effector cells, and cross-link the targets to the effector
cells. Lysis of virus-infected target cells has also been observed
(Staerz, Yewdell & Bevan, 1987). The use of bispecific anti-
bodies may not simply serve to glue the targets and effector cells
together, but may also trigger the cytolytic process (Karpovsky
et al., 1984). Cytotoxicity has been shown not to be due to
bystander lysis, since direct contact between effector and target
cells is required (Barr et al., 1987; Lanzavecchia & Scheidegger,
1987).

Most of the experiments on effector cell targeting were
performed using homologous effector cell populations, such as
cloned T cells. The mechanisms of cytotoxicity in vivo may be
different and may involve several killing systems. Destruction of
the putative effector cells (Lanzavecchia & Scheidegger, 1987),
possibly due to the fact that the bispecific antibody-bound
effector cells may themselves serve as targets for antibody-
dependent cell-mediated cytotoxicity, has been observed. It
seems that mixed isotype bispecific antibodies, such as rat
IgG2b-IgG2c, which can mediate cytotoxicity of target cells by
non-ADCC mechanisms, may minimize this problem (Clark &
Waldmann, 1987).

Specific deliver)' of effector compounds to targets
Targeting toxic compounds to tumours has been investigated by
using anti-CEA-anti-vinca alkaloid hybrid bispecific antibodies
(Corvalan et al., 1987). Radiolabelled vinblastine sulphate was
localized at the tumour sites when injected with or after the
bispecific antibodies. The background radiation in other organs
such as liver and spleen was low compared with the radio-
labelled drug alone. Therapeutic data produced in the in vivo
mouse xenografted model indicated that this method was more
effective in suppressing tumour growth than the vinca alkaloids
when given as free drug (Corvalan, Smith & Gore, 1988). A
study using anti-idiotype-anti-saporin heteroconjugates for
treatment oflymphoma also showed encouraging results (Glen-
nie et al., 1988). Clinical studies using heteroconjugate bispecific
F(ab)2 anti-CEA-anti-BLEDTA IV, an In-1Il benzyl EDTA
derivative of cobalt bleomycin, injected into patients with colon
cancer 24-120 hours before the injection of "'In BLEDTA,
showed good tumour targeting with low uptake by liver and
bone marrow (Stickney et al., 1989).

A multi-stage delivery system using bispecific antibodies
may have a disadvantage since its effectiveness relies on the two
antigen-antibody interactions, between two arms of bispecific
antibodies and both target and effector molecules. This poten-
tial problem may be overcome by the use of high-affinity
bispecific monoclonal antibodies. The bispecific antibody must

also be accessible to the effector molecules on the surface of
target cells. This problem may not occur with the monovalent
bispecific antibodies.

Bispecific antibodies can be used to distinguish cells that co-

express two different surface antigens. Anti-CD3-anti-CD4 and
anti-CD3-anti-CD8 bispecific antibodies were shown to pro-
mote complement-mediated lysis of target cells that express
both the relevant surface antigens 25 to 3125 times more

efficiently than those expressing only one of the antigens (Wong
& Colvin, 1987).

Several other systems have also been studied, such as direct
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targeting of tissue plasminogen activator (tPA) by anti-tPA-
anti-fibrin bispecific antibody to enhance thrombolysis (Bode et
al., 1989). Anti-interferon (IFN)-anti-target cell heterocon-
jugates were shown to deliver IFN specifically to target cells and
also inhibit their growth in vitro (Alkan, Towbin & Hochkeppel,
1988).

PROSPECTS

Bispecific antibodies have potential for a wide range of clinical
applications but are still difficult to produce. Areas in which
improvement must be made before these methods become
widely acceptable include fusion and selection, chemical
coupling, and purification.

Universal bispecific antibodies may be produced. Chain-,
class-, or isotype-specific antibody may be used as a general
target binding arm. This type of construct has been proved
effective for indirect effector cell retargeting in an in vitro system
(Gilliland, Clark& Waldmann, 1988). Hapten-specific antibody
may also be used as a general effector binding arm (Songsivilai
et al., 1989), allowing the effectiveness of different effector
compounds, such as radionuclides, toxins, and cytotoxic drugs
attached to carrier hapten to be investigated by the same
bispecific antibody. These two approaches may be combined.
The universal agents will minimize the need to make bispecific
antibodies for a variety of targets and toxic agents.

For the clinical use of bispecific antibodies, human immuno-
globulins would be preferred. Human hybrid hybridoma cell
lines are difficult to produce (Tiebout et al., 1987) and may have
the same theoretical and technical disadvantages as the murine
hybridoma cells. Genetic manipulation by introducing sets of
chimaeric immunoglobulin genes into myeloma or hybridoma
cell lines is an alternative. The new techniques of antibody
engineering which may revolutionize the monoclonal antibody
technology will be a powerful tool for the production of 'tailor-
made' bispecific molecules.

The in vitro and in vivo properties of the mixed-isotype
bispecific antibodies are worth investigating. It may increase our
understanding of the effector functions of immunoglobulin,
such as Fc receptor binding and complement activation.
Alteration of heavy chain pairing may affect the effector
functions of monoclonal antibodies which may be of benefit for
therapy. A matched set of bispecific antibodies with the same
specificity may be of value (Songsivilai et al., 1989).

Antibodies with two distinct binding ends show great
promise as targeting agents and for improving immunoassays.
When the problems associated with their manufacture have
been satisfactorily resolved, they are likely to find widespread
clinical applications both for diagnostic purposes and therapy.
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